Skip to main content
Log in

Deployable Structures: Structural Design and Static/Dynamic Analysis

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Deployable structures can realize the transformation from a folded configuration to a deployed configuration to satisfy the requirements of applications. They have been widely used in aerospace structures, civil temporary components, medical devices, transformable robotics and other engineering applications. A large amount of research has been carried out on the structural design ranging from rigid, rigid-flexible to flexible structures and the performance analysis including the static loading properties and structural stability, as well as the dynamics during deployment and in the deployed configuration. However, to date, there are no mature systematic approaches for the design and analysis of deployable structures due to diverted application demands. Therefore, in this review, efforts are made to find a common methodology from most existing successful cases and to propose the major challenges for the future applications of deployable structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Pellegrino, S.: Deployable Structures. Springer, Italy (2014)

    Google Scholar 

  2. Gruber, P., Häuplik, S., Imhof, B., Özdemir, K., Waclavicek, R., Perino, M.A.: Deployable structures for a human lunar base. Acta Astronaut. 61, 484–495 (2007)

    Article  ADS  Google Scholar 

  3. Lee, N., Backes, P., Burdick, J., Pellegrino, S., Fuller, C., Hogstrom, K., Kennedy, B., Kim, J., Mukherjee, R., Seubert, C., Wu, Y.: Architecture for in-space robotic assembly of a modular space telescope. J. Astron. Telesc. Instrum. Syst. 2, 041207 (2016)

    Article  ADS  Google Scholar 

  4. You, Z.: Deployable structure of curved profile for space antennas. J. Aerosp. Eng. 13, 139–143 (2000)

    Article  Google Scholar 

  5. Nassehpour, S., Kwan, A.S.K.: New concepts in large deployable parabolic solid reflectors. In: Proceedings of the AECEF Symposium, pp. 162–171. Vilnius Gediminas Technical University, Department of Construction Economics & Property, Vilnius (2008)

    Google Scholar 

  6. Zirbel, S.A., Lang, R.J., Thomson, M.W., Sigel, D.A., Walkemeyer, P.E., Trease, B.P., Magleby, S.P., Howell, L.L.: Accommodating thickness in origami-based deployable arrays. J. Mech. Des. 135, 111005 (2013)

    Google Scholar 

  7. Murphy, D.M., Eskenazi, M.I., McEachen, M.E., Spink, J.W.: Ultraflex and megaflex-development of highly scalable solar power. In: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp. 1–8. IEEE, New Orleans (2015)

    Google Scholar 

  8. Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G., Adams, C.: NanoSail-D: a solar sail demonstration mission. Acta Astronaut. 68, 571–575 (2011)

    Article  ADS  Google Scholar 

  9. Wilson, L., Pellegrino, S., Danner, R.: Origami sunshield concepts for space telescopes. In: The 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1594. AIAA, Boston (2013)

    Google Scholar 

  10. Doroftei, I.A., Bujoreanu, C., Doroftei, I.: An overview on the applications of mechanisms in architecture. Part I: bar structures. In: The 8th International Conference on Advanced Concepts in Mechanical Engineering, p. 052018. IOP Publishing, Bristol (2018)

    Google Scholar 

  11. Doroftei, I.A., Bujoreanu, C., Doroftei, I.: An overview on the applications of mechanisms in architecture. Part II: foldable plate structures. In: The 8th International Conference on Advanced Concepts in Mechanical Engineering, p. 052019. IOP Publishing, Bristol (2018)

    Google Scholar 

  12. Lee, T.U., Gattas, J.M.: Geometric design and construction of structurally stabilized accordion shelters. J. Mech. Robot. 8, 031009 (2016)

    Article  Google Scholar 

  13. De Temmerman, I.A.N., Mollaert, M., Van Mele, I.A.T., De Laet, I.A.L.: Design and analysis of a foldable mobile shelter system. Int. J. Space Struct. 22, 161–168 (2007)

    Article  Google Scholar 

  14. Liu, X., Gattas, J.M., Chen, Y.: One-DOF superimposed rigid origami with multiple states. Sci. Rep. 6, 36883 (2016)

    Article  ADS  Google Scholar 

  15. Chikahiro, Y., Ario, I., Pawlowski, P., Graczykowski, C., Nakazawa, M., Holnicki-Szulc, J., Ono, S.: Dynamics of the scissors-type mobile bridge. Proc. Eng. 199, 2919–2924 (2017)

    Article  Google Scholar 

  16. Zhu, L., Zhang, D., Shao, F., Xu, Q., Zhao, Q.: Structural evaluation of torsional rigidity of new FRP-aluminum space truss bridge with rigid transverse braces. KSCE J. Civ. Eng. 23, 3021–3029 (2019)

    Article  Google Scholar 

  17. Kassabian, P., You, Z., Pellegrino, S.: Retractable roof structures. Proc. Inst. Civ. Eng. Struct. Build. 134, 45–56 (1999)

    Article  Google Scholar 

  18. Ozaki, Y., Violaris, A.G., Serruys, P.W.: New stent technologies. Prog. Cardiovasc. Dis. 39, 129–140 (1996)

    Article  Google Scholar 

  19. Duda, S.H., Wiskirchen, J., Tepe, G., Bitzer, M., Kaulich, T.W., Stoeckel, D., Claussen, C.D.: Physical properties of endovascular stents: an experimental comparison. J. Vasc. Interv. Radiol. 11, 645–654 (2000)

    Article  Google Scholar 

  20. Kuribayashi, K., Tsuchiya, K., You, Z., Tomus, D., Umemoto, M., Ito, T., Sasaki, M.: Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. A 419, 131–137 (2006)

    Article  Google Scholar 

  21. Bobbert, F.S.L., Janbaz, S., Zadpoor, A.A.: Towards deployable meta-implants. J. Mater. Chem. B 6, 3449–3455 (2018)

    Article  Google Scholar 

  22. Edmondson, B.J., Bowen, L.A., Grames, C.L., Magleby, S.P., Howell, L.L., Bateman, T.C.: Oriceps: origami-inspired forceps. In: ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, p. V001T01A027. ASME, Utah (2013)

    Google Scholar 

  23. Miyashita, S., Guitron, S., Li, S., Rus, D.: Robotic metamorphosis by origami exoskeletons. Sci. Robot. 2, eaao4369 (2017)

    Article  Google Scholar 

  24. Lee, D.Y., Kim, J.S., Kim, S.R., Koh, J.S., Cho, K.J.: The deformable wheel robot using magic-ball origami structure. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V06BT07A040. ASME, Portland (2013)

    Google Scholar 

  25. Banerjee, H., Pusalkar, N., Ren, H.: Single-motor controlled tendon-driven peristaltic soft origami robot. J. Mech. Robot. 10, 064501 (2018)

    Article  Google Scholar 

  26. https://spaceflightnow.com/news/n0403/29mbsat/. Accessed 16 May 2021

  27. Zhang, X., Chen, Y.: Mobile assemblies of Bennett linkages from four-crease origami patterns. Proc. Math. Phys. Eng. Sci. 474, 20170621 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Chen, Y., You, Z., Tarnai, T.: Threefold-symmetric Bricard linkages for deployable structures. Int. J. Solids Struct. 42, 2287–2301 (2005)

    Article  MATH  Google Scholar 

  29. Chen, Y., You, Z.: An extended Myard linkage and its derived 6R linkage. J. Mech. Des. 130, 052301 (2008)

    Google Scholar 

  30. Chen, Y., You, Z.: Two-fold symmetrical 6R foldable frame and its bifurcations. Int. J. Solids Struct. 46, 4504–4514 (2009)

    Article  MATH  Google Scholar 

  31. Huang, H., Li, B., Zhu, J., Qi, X.: A new family of Bricard-derived deployable mechanisms. J. Mech. Robot. 8, 034503 (2016)

    Article  Google Scholar 

  32. Cao, W.A., Yang, D., Ding, H.: A new family of deployable mechanisms derived from two-layer and two-loop spatial linkages with five revolute pair coupling chains. J. Mech. Robot. 9, 061016 (2017)

    Article  Google Scholar 

  33. Gattas, J.M., Wu, W., You, Z.: Miura-base rigid origami: parameterizations of first-level derivative and piecewise geometries. J. Mech. Des. 135, 111011 (2013)

    Google Scholar 

  34. Liu, S., Chen, Y., Lu, G.: The rigid origami patterns for flat surface. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V06BT07A039. ASME, Portland (2013)

    Google Scholar 

  35. Chen, Y., Lv, W., Li, J., You, Z.: An extended family of rigidly foldable origami tubes. J. Mech. Robot. 9, 021002 (2017)

    Article  Google Scholar 

  36. Feng, H.J., Peng, R., Ma, J.Y., Chen, Y.: Rigid foldability of generalized triangle twist origami pattern and its derived 6R linkages. J. Mech. Robot. 10, 051003 (2018)

    Article  Google Scholar 

  37. Wang, R., Sun, J., Dai, J.S.: Design analysis and type synthesis of a petal-inspired space deployable-foldable mechanism. Mech. Mach. Theory 141, 151–170 (2019)

    Article  Google Scholar 

  38. You, Z., Chen, Y.: Motion Structures: Deployable Structural Assemblies of Mechanisms. Spon Press, New York (2014)

    Google Scholar 

  39. Han, B., Xu, Y., Yao, J., Zheng, D., Guo, X., Zhao, Y.: Configuration synthesis of hoop truss deployable mechanisms for space antenna based on screw theory. AIP Adv. 9, 085201 (2019)

    Article  ADS  Google Scholar 

  40. Han, B., Xu, Y., Yao, J., Zheng, D., Guo, L., Zhao, Y.: Type synthesis of deployable mechanisms for ring truss antenna based on constraint-synthesis method. Chin. J. Aeronaut. 33, 2445–2460 (2020)

    Article  Google Scholar 

  41. Liu, S., Lv, W., Chen, Y., Lu, G.: Deployable prismatic structures with rigid origami patterns. J. Mech. Robot. 8, 031002 (2016)

    Article  Google Scholar 

  42. Ario, I., Nakazawa, M., Tanaka, Y., Tanikura, I., Ono, S.: Development of a prototype deployable bridge based on origami skill. Autom. Constr. 32, 104–111 (2013)

    Article  Google Scholar 

  43. https://www.northropgrumman.com/space-old/astro-aerospace-products-telescopic-tube-masts/. Accessed 16 May 2021

  44. You, Z., Pellegrino, S.: Cable-stiffened pantographic deployable structures part I-triangular mast. AIAA J. 34, 813–820 (1996)

    Article  ADS  Google Scholar 

  45. Kim, T.H., Suh, J.E., Han, J.H.: Deployable truss structure with flat-form storability using scissor-like elements. Mech. Mach. Theory 159, 104252 (2021)

    Article  Google Scholar 

  46. Lu, S., Zlatanov, D., Ding, X., Molfino, R.: A new family of deployable mechanisms based on the Hoekens linkage. Mech. Mach. Theory 73, 130–153 (2014)

    Article  Google Scholar 

  47. Zhao, L., Wang, H., Chen, G., Huang, S.: Sequentially assembled reconfigurable extended joints: self-lockable deployable structure. J. Aerosp. Eng. 31, 04018103 (2018)

    Article  Google Scholar 

  48. Choi, J., Lee, D., Hwang, K., Kim, B.: Design, fabrication, and evaluation of a passive deployment mechanism for deployable space telescope. Adv. Mech. Eng. 11, 1–14 (2019)

    Article  Google Scholar 

  49. Mousanezhad, D., Kamrava, S., Vaziri, A.: Origami-based building blocks for modular construction of foldable structures. Sci. Rep. 7, 1–8 (2017)

    Article  Google Scholar 

  50. Filipov, E.T., Tachi, T., Paulino, G.H.: Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc. Natl. Acad. Sci. USA 112, 12321–12326 (2015)

    Article  ADS  Google Scholar 

  51. Dai, J.S., Rees Jones, J.: Mobility in metamorphic mechanisms of foldable/erectable kinds. J. Mech. Des. 121, 375–382 (1999)

    Google Scholar 

  52. Wang, K., Chen, Y.: Folding a patterned cylinder by rigid origami. In: Wang, I.P., Lang, R.J., Mark, Y. (eds.) Origami, vol. 5, pp. 265–276. AK Peters/CRC Press, New York (2011)

    Google Scholar 

  53. Qi, X., Huang, H., Li, B., Deng, Z.: A large ring deployable mechanism for space satellite antenna. Aerosp. Sci. Technol. 58, 498–510 (2016)

    Article  Google Scholar 

  54. Tserodze, S., Prowald, J.S., Gogilashvili, V., Chkhikvadze, K.: Transformable reflector structure with V-folding rods. CEAS Space J. 8, 291–301 (2016)

    Article  ADS  Google Scholar 

  55. Han, B., Zheng, D., Xu, Y., Yao, J., Zhao, Y.: Kinematic characteristics and dynamics analysis of an overconstrained scissors double-hoop truss deployable antenna mechanism based on screw theory. IEEE Access 7, 140755–140768 (2019)

    Article  Google Scholar 

  56. Tserodze, S., Prowald, J.S., Chkhikvadze, K., Nikoladze, M., Muchaidze, M.: Latest modification of the deployable space reflector structure with V-folding bars. CEAS Space J. 12, 163–169 (2020)

    Article  ADS  Google Scholar 

  57. Zirbel, S.A., Trease, B.P., Thomson, M.W., Lang, R.J., Magleby, S.P., Howell, L.H.: Hanaflex: a large solar array for space applications. In: Micro-and Nanotechnology Sensors, Systems, and Applications VII, p. 94671C. SPIE, Maryland (2015)

    Google Scholar 

  58. Liu, S.Y., Chen, Y.: Myard linkage and its mobile assemblies. Mech. Mach. Theory 44, 1950–1963 (2009)

    Article  MATH  Google Scholar 

  59. Huang, H., Deng, Z., Li, B.: Mobile assemblies of large deployable mechanisms. J. Space Eng. 5, 1–14 (2012)

    Article  ADS  Google Scholar 

  60. Baker, J.E.: The Bennett linkage and its associated quadric surfaces. Mech. Mach. Theory 23, 147–156 (1988)

    Article  ADS  Google Scholar 

  61. Baker, J.E.: The Bennett, Goldberg and Myard linkages—in perspective. Mech. Mach. Theory 14, 239–253 (1979)

    Article  Google Scholar 

  62. Myard, F.E.: Contribution à la géométrie des systèmes articulés. Bull. Soc. Math. Fr. 59, 183–210 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  63. Feng, H., Chen, Y., Dai, J.S., Gogu, G.: Kinematic study of the general plane-symmetric Bricard linkage and its bifurcation variations. Mech. Mach. Theory 116, 89–104 (2017)

    Article  Google Scholar 

  64. Yang, F., You, Z., Chen, Y.: Foldable hexagonal structures based on the threefold-symmetric Bricard linkage. J. Mech. Robot. 12, 011012 (2020)

    Article  Google Scholar 

  65. Gan, W., Pellegrino, S.: Closed-loop deployable structures. In: The 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1450. AIAA, Norfolk (2003)

    Google Scholar 

  66. Ma, B., Huang, H.: Large deployable networks constructed by interconnected Bricard linkages. Adv. Mater. Res. 338, 723–726 (2011)

    Article  Google Scholar 

  67. Song, X., Guo, H., Li, B., Liu, R., Deng, Z.: Large deployable network constructed by Altmann linkages. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 231, 341–355 (2017)

    Article  Google Scholar 

  68. You, Z., Chen, Y.: Mobile assemblies based on the Bennett linkage. Proc. R. Soc. A, Math. Phys. Eng. Sci. 461, 1229–1245 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  69. Chen, Y., You, Z.: Square deployable frames for space applications. Part 2: realization. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 221, 37–45 (2007)

    Article  Google Scholar 

  70. Lu, S., Zlatanov, D., Ding, X.: Approximation of cylindrical surfaces with deployable Bennett networks. J. Mech. Robot. 9, 021001 (2017)

    Article  Google Scholar 

  71. Yang, F.F., Li, J.M., Chen, Y., You, Z.: A deployable Bennett network in saddle surface. In: Proceedings of the 14th IFToMM World Congress, IFToMM, Taiwan, pp. 428–434 (2015)

    Google Scholar 

  72. Song, X., Deng, Z., Guo, H., Liu, R., Li, L., Liu, R.: Networking of Bennett linkages and its application on deployable parabolic cylindrical antenna. Mech. Mach. Theory 109, 95–125 (2017)

    Article  Google Scholar 

  73. Alegria Mira, L., Thrall, A.P., De Temmerman, N.: Deployable scissor arch for transitional shelters. Autom. Constr. 43, 123–131 (2014)

    Article  Google Scholar 

  74. Zhao, J.S., Wang, J.Y., Chu, F., Feng, Z.J., Dai, J.S.: Structure synthesis and statics analysis of a foldable stair. Mech. Mach. Theory 46, 998–1015 (2011)

    Article  MATH  Google Scholar 

  75. Akgün, Y., Gantes, C.J., Sobek, W., Korkmaz, K., Kalochairetis, K.: A novel adaptive spatial scissor-hinge structural mechanism for convertible roofs. Eng. Struct. 33, 1365–1376 (2011)

    Article  Google Scholar 

  76. Holland, A., Straub, J.: Development of origami-style solar panels for use in support of a Mars mission. In: Energy Harvesting and Storage: Materials, Devices, and Applications VII, p. 98650D. SPIE, Maryland (2016)

    Google Scholar 

  77. Kanemitsu, T., Matsumoto, S., Namba, H., Sato, T., Tadokoro, H., Oura, T., Takagi, K., Aoki, S., Kaya, N.: Self-Deployable Antenna Using Centrifugal Force pp. 173–182. Springer Netherlands, Dordrecht (2000)

    Google Scholar 

  78. Huang, H., Guan, F., Pan, L., Xu, Y.: Design and deploying study of a new petal-type deployable solid surface antenna. Acta Astronaut. 148, 99–110 (2018)

    Article  ADS  Google Scholar 

  79. Chen, Y., Peng, R., You, Z.: Origami of thick panels. Science 349, 396–400 (2015)

    Article  ADS  Google Scholar 

  80. Chen, Y., Feng, H., Ma, J., Peng, R., You, Z.: Symmetric waterbomb origami. Proc. R. Soc. A, Math. Phys. Eng. Sci. 472, 20150846 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  81. Zhang, X., Chen, Y.: The diamond thick-panel origami and the corresponding mobile assemblies of plane-symmetric Bricard linkages. Mech. Mach. Theory 130, 585–604 (2018)

    Article  Google Scholar 

  82. Hoberman, C.: Connections to make foldable structures. EP20010300695 (2002)

  83. Yang, F., Chen, Y.: One-DOF transformation between tetrahedron and truncated tetrahedron. Mech. Mach. Theory 121, 169–183 (2018)

    Article  Google Scholar 

  84. Chen, Y., Yang, F., You, Z.: Transformation of polyhedrons. Int. J. Solids Struct. 138, 193–204 (2018)

    Article  Google Scholar 

  85. Yang, F., You, Z., Chen, Y.: Mobile assembly of two Bennett linkages and its application to transformation between cuboctahedron and octahedron. Mech. Mach. Theory 145, 103698 (2020)

    Article  Google Scholar 

  86. Wei, G., Chen, Y., Dai, J.S.: Synthesis, mobility, and multifurcation of deployable polyhedral mechanisms with radially reciprocating motion. J. Mech. Des. 136, 091003 (2014)

    Google Scholar 

  87. Xiu, H.H., Wang, K.Y., Wei, G.W., Ren, L., Dai, J.S.: A Sarrus-like overconstrained eight-bar linkage and its associated Fulleroid-like platonic deployable mechanisms. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 234, 241–262 (2020)

    Article  Google Scholar 

  88. Gu, Y., Chen, Y.: Origami cubes with one-Dof rigid and flat foldability. Int. J. Solids Struct. 207, 250–261 (2020)

    Article  Google Scholar 

  89. Gu, Y., Wei, G., Chen, Y.: Thick-panel origami cube. Mech. Mach. Theory 164, 104411 (2021)

    Article  Google Scholar 

  90. Xu, Y., Lin, Q., Wang, X., Li, L., Cong, Q., Pan, B.: Mechanism design and dynamic analysis of a large-scale spatial deployable structure for space mission. In: Seventh International Conference on Electronics and Information Engineering, p. 1032226. SPIE, Nanjing (2017)

    Google Scholar 

  91. Ikeya, K., Sakamoto, H., Nakanishi, H., Furuya, H., Tomura, T., Ide, R., Iijima, R., Iwasaki, Y., Ohno, K., Omoto, K., Furuya, T., Hayashi, T., Kato, M., Koide, S., Kurosaki, M., Nakatsuka, Y., Okuyama, S., Kashiyama, R., Nakamura, J., Nio, W., Tsunemitsu, T., Yamazaki, Y., Taga, K., Hohmann, B., Amamoto, T., Chubachi, T., Tamura, S., Okada, H., Watanabe, A., Kawabata, N., Hori, T., Ito, H., Kuratomi, T., Shimoda, Y., Hidaka, N., Watanabe, K., Torisaka, A., Yamazaki, M.: Significance of 3U cubesat Origamisat-1 for space demonstration of multifunctional deployable membrane. Acta Astronaut. 173, 363–377 (2020)

    Article  ADS  Google Scholar 

  92. Block, J., Straubel, M., Wiedemann, M.: Ultralight deployable booms for solar sails and other large gossamer structures in space. Acta Astronaut. 68, 984–992 (2011)

    Article  ADS  Google Scholar 

  93. Block, J., Bäger, A., Behrens, J., Delovski, T., Hauer, L.C., Schütze, M., Schütze, R., Spröwitz, T.: A self-deploying and self-stabilizing helical antenna for small satellites. Acta Astronaut. 86, 88–94 (2013)

    Article  ADS  Google Scholar 

  94. Sproewitz, T., Reershemius, S., Hauer, L.C., Fexer, S., Schütze, M., Suhr, B.: Development, testing and in-orbit verification of a large CFRP helical antenna on the AIsat mission. In: 2020 IEEE Aerospace Conference, pp. 1–9. IEEE, MT (2020)

    Google Scholar 

  95. Crawford, R.: Strength and efficiency of deployable booms for space applications. In: The 12th Structures, Structural Dynamics and Materials Conference, pp. 1–13. AIAA, CA (1971)

    Google Scholar 

  96. Li, H., Yu, Z., Guo, S., Cai, G.: Investigation of joint clearances in a large-scale flexible solar array system. Multibody Syst. Dyn. 44, 277–292 (2018)

    Article  MathSciNet  Google Scholar 

  97. Mao, H., Ganga, P.L., Ghiozzi, M., Ivchenko, N., Tibert, G.: Deployment of bistable self-deployable tape spring booms using a gravity offloading system. J. Aerosp. Eng. 30, 04017007 (2017)

    Article  Google Scholar 

  98. Fujioka, E., Yokozeki, T., Watanabe, A., Aoki, T.: Analysis on temperature-dependent deployment behavior of bi-stable composite rods. Adv. Compos. Mater. 28, 245–257 (2019)

    Article  Google Scholar 

  99. Chu, Z., Lei, Y., Li, D.: Dynamics and robust adaptive control of a deployable boom for a space probe. Acta Astronaut. 97, 138–150 (2014)

    Article  ADS  Google Scholar 

  100. Kresling, B.: Natural twist buckling in shells: from the hawkmoth’s bellows to the deployable Kresling-pattern and cylindrical. In: Miura-ori Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures, pp. 12–32. IASS-IACM, Ithaca (2008)

    Google Scholar 

  101. Senda, K., Ohta, S., Igarashi, Y., Watanabe, A., Hori, T., Ito, H., Tsunoda, H., Watanabe, K.: Deploy experiment of inflatable tube using work hardening. In: The 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1808. AIAA, Rhode Island (2006)

    Google Scholar 

  102. Schenk, M., Viquerat, A.D., Seffen, K.A., Guest, S.D.: Review of inflatable booms for deployable space structures: packing and rigidization. J. Spacecr. Rockets 51, 762–778 (2014)

    Article  ADS  Google Scholar 

  103. Pagano, A., Yan, T., Chien, B., Wissa, A., Tawfick, S.: A crawling robot driven by multi-stable origami. Smart Mater. Struct. 26, 094007 (2017)

    Article  ADS  Google Scholar 

  104. Bhovad, P., Kaufmann, J., Li, S.: Peristaltic locomotion without digital controllers: exploiting multi-stability in origami to coordinate robotic motion. Extreme Mech. Lett. 32, 100552 (2019)

    Article  Google Scholar 

  105. Morgan, J., Magleby, S.P., Howell, L.L.: An approach to designing origami-adapted aerospace mechanisms. J. Mech. Des. 138, 052301 (2016)

    Google Scholar 

  106. Miura, K., Miura, K.: Triangles and quadrangles in space. In: Symposium of the International Association for Shell and Spatial Structures, pp. 27–38. IASS, Valencia (2009)

    Google Scholar 

  107. Guest, S.D., Pellegrino, S.: Inextensional wrapping of flat membranes. In: Proceedings of the First International Seminar on Structural Morphology, Montpellier, pp. 203–215 (1992)

    Google Scholar 

  108. Pellegrino, S., Vincent, J.F.: How to fold a membrane. In: Pellegrino, S. (ed.) Deployable Structures, pp. 59–75. Springer, New York (2001)

    Chapter  Google Scholar 

  109. Lang, R.J.: Origami in Action: Paper Toys that Fly, Flag, Gobble and Inflate. Macmillan, London (1997)

    Google Scholar 

  110. Miura, K., Pellegrino, S.: Forms and Concepts for Lightweight Structures. Cambridge University Press, Cambridge (2020)

    Book  Google Scholar 

  111. Nojima, T.: Origami modeling of functional structures based on organic patterns. Presentation Manuscript at Vipsi Tokyo (1996)

  112. Yao, S., Liu, X., Georgakopoulos, S.V.: Study and design of Nojima origami conical spiral antenna. In: IEEE International Symposium on Antennas & Propagation, pp. 1431–1432. IEEE, Fajardo (2016)

    Google Scholar 

  113. Miyazaki, Y.: Deployable techniques for small satellites. Proc. IEEE 106, 471–483 (2018)

    Article  Google Scholar 

  114. Miyazaki, Y., Fukunaga, M., Kousaka, D.: Membrane structure supported by self-deployable truss for space applications. In: 2018 AIAA Spacecraft Structures Conference, p. 1201. AIAA, Florida (2018)

    Google Scholar 

  115. Arya, M., Lee, N., Pellegrino, S.: Wrapping thick membranes with slipping folds. In: 2nd AIAA Spacecraft Structures Conference, p. 0682. AIAA, Kissimmee (2015)

    Google Scholar 

  116. Arya, M., Lee, N., Pellegrino, S.: Ultralight structures for space solar power satellites. In: 3rd AIAA Spacecraft Structures Conference, p. 1950. AIAA, San Diego (2016)

    Google Scholar 

  117. Sosa, E.M., Thompson, G.J., Barbero, E.J.: Experimental investigation of initial deployment of inflatable structures for sealing of rail tunnels. Tunn. Undergr. Space Technol. 69, 37–51 (2017)

    Article  Google Scholar 

  118. Litteken, D.A.: Inflatable technology: using flexible materials to make large structures. In: Proc. SPIE 10966, Electroactive Polymer Actuators and Devices (EAPAD) XXI, p. 1096603. SPIE, Denver (2019)

    Google Scholar 

  119. Yang, H., Guo, H.W., Wang, Y., Liu, R.Q., Li, M.: Design and experiment of triangular prism mast with tape-spring hyperelastic hinges. Chin. J. Mech. Eng. 31, 1–10 (2018)

    Article  Google Scholar 

  120. Tibert, G., Pellegrino, S.: Deployable tensegrity masts. In: 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1978. AIAA, Norfolk (2003)

    Google Scholar 

  121. Wang, W., Rodrigue, H., Ahn, S.H.: Deployable soft composite structures. Sci. Rep. 6, 20869 (2016)

    Article  ADS  Google Scholar 

  122. Tan, G.E.B., Pellegrino, S.: Nonlinear vibration of cable-stiffened pantographic deployable structures. J. Sound Vib. 314, 783–802 (2008)

    Article  ADS  Google Scholar 

  123. Wu, M., Zhang, T., Xiang, P., Guan, F.: Single-layer deployable truss structure driven by elastic components. J. Aerosp. Eng. 32, 04018144 (2019)

    Article  Google Scholar 

  124. Jeon, S.K., Footdale, J.N.: Scaling and optimization of a modular origami solar array. In: 2018 AIAA Spacecraft Structures Conference, p. 2204. AISS, Kissimmee (2018)

    Google Scholar 

  125. Guo, W., Li, Y., Li, Y.-Z., Tian, S., Wang, S.: Thermal-structural analysis of large deployable space antenna under extreme heat loads. J. Therm. Stresses 39, 887–905 (2016)

    Article  Google Scholar 

  126. Datashvili, L., Baier, H., Wehrle, E., Kuhn, T., Hoffmann, J.: Large shell-membrane space reflectors. In: The 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 2504. AIAA, Orlando (2010)

    Google Scholar 

  127. https://www.northropgrumman.com/space/astro-aerospace-products-astromesh. Accessed 28 August 2021

  128. Mobrem, M., Kuehn, S., Spier, C., Slimko, E.: Design and performance of AstroMesh reflector onboard soil moisture active passive spacecraft. In: 2012 IEEE Aerospace Conference, pp. 1–10. IEEE, Big Sky (2012)

    Google Scholar 

  129. Meguro, A., Tsujihata, A., Hamamoto, N., Homma, M.: Technology status of the 13 m aperture deployment antenna reflectors for engineering test satellite VIII. Acta Astronaut. 47, 147–152 (2000)

    Article  ADS  Google Scholar 

  130. Morterolle, S., Maurin, B., Quirant, J., Dupuy, C.: Numerical form-finding of geotensoid tension truss for mesh reflector. Acta Astronaut. 76, 154–163 (2012)

    Article  ADS  Google Scholar 

  131. Yang, G., Duan, B., Zhang, Y., Yang, D.: Uniform-tension form-finding design for asymmetric cable-mesh deployable reflector antennas. Adv. Mech. Eng. 8, 1687814016672367 (2016)

    Article  Google Scholar 

  132. Santiago-Prowald, J., Baier, H.: Advances in deployable structures and surfaces for large apertures in space. CEAS Space J. 5, 89–115 (2013)

    Article  ADS  Google Scholar 

  133. Tang, Y., Shi, Z., Li, T., Wang, Z.: Double-layer cable-net structures for deployable umbrella reflectors. J. Aerosp. Eng. 32, 04019068 (2019)

    Article  Google Scholar 

  134. Hinkle, J., Dixit, A., Lin, J., Whitley, K., Watson, J., Valle, G.: Design development and testing for an expandable lunar habitat. In: AIAA SPACE 2008 Conference & Exposition, p. 7634. AIAA, San Diego (2008)

    Google Scholar 

  135. Hong, Y., Yao, W., Xu, Y.: Structural design and impact analysis of deployable habitat modules. Int. J. Aerosp. Eng. 2018, 3252104 (2018)

    Google Scholar 

  136. Dronadula, R., Benaroya, H.: Hybrid lunar inflatable structure. Acta Astronaut. 179, 42–55 (2021)

    Article  ADS  Google Scholar 

  137. https://www.nasa.gov/feature/beam-facts-figures-faqs. Accessed 28 August 2021

  138. Li, B., Qi, X., Huang, H., Xu, W.: Modeling and analysis of deployment dynamics for a novel ring mechanism. Acta Astronaut. 120, 59–74 (2016)

    Article  ADS  Google Scholar 

  139. Chang, W., Cao, D., Lian, M.: Simulation and analysis of tape spring for deployed space structures. In: Young Scientists Forum 2017, p. 1071022. SPIE, Shanghai (2018)

    Google Scholar 

  140. Bettini, W., Quirant, J., Averseng, J., Maurin, B.: Self-deployable geometries for space applications. J. Aerosp. Eng. 32, 04018138 (2019)

    Article  Google Scholar 

  141. Chu, Z., Hu, J., Yan, S., Zhou, M.: Experiment on the retraction/deployment of an active-passive composited driving deployable boom for space probes. Mech. Mach. Theory 92, 436–446 (2015)

    Article  Google Scholar 

  142. Allred, R.E., Hoyt, A., Mcelroy, P.M., Scarborough, S., Cadogan, D.P.: UV rigidizable carbon-reinforced isogrid inflatable booms. In: The 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1202. AIAA, Denver (2013)

    Google Scholar 

  143. Gantes, C.: A design methodology for deployable structures. Massachusetts Institute of Technology (1991)

  144. Gantes, C.J.: Design strategies for controlling structural instabilities. Int. J. Space Struct. 15, 167–188 (2000)

    Article  Google Scholar 

  145. Huang, S.G., Schimmels, J.M.: The bounds and realization of spatial stiffnesses achieved with simple springs connected in parallel. IEEE Trans. Robot. Autom. 14, 466–475 (1998)

    Article  Google Scholar 

  146. Raskin, I., Roorda, J.: Nonlinear analysis of uniform pantographic columns in compression. J. Eng. Mech. 125, 1344–1348 (1999)

    Article  Google Scholar 

  147. Ge, D.M., Chen, W.J., Fu, G.Y., Dong, S.L.: Buckling theoretical analysis of coilable hingeless extendible/retractable space mast. Chin. J. Comput. Mech. 24, 615–619 (2007)

    Google Scholar 

  148. Jin, Y., Liu, T., Lyu, R., Ji, B., Cui, Q.: Theoretical analysis and experimental investigation on buckling of fastmast deployable structures. Int. J. Struct. Stab. Dyn. 15, 1450075 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  149. Li, B., Wang, S.M., Zhi, C.J., Xue, X.Z., Makis, V.: Analytical and numerical study of the buckling of planar linear array deployable structures based on scissor-like element under its own weight. Mech. Syst. Signal Process. 83, 474–488 (2017)

    Article  ADS  Google Scholar 

  150. Song, Y., Ho Chi, O., Qing, Z.: A study of new deployable structure. Adv. Mater. Res. 1049, 1083–1089 (2014)

    Article  Google Scholar 

  151. Vu, K.K., Liew, J.Y., Krishnapillai, A.: Commutative algebra in structural analysis of deployable tension-strut structures. J. Int. Assoc. Shell Spat. Struct. 46, 173–178 (2005)

    Google Scholar 

  152. Zhao, B., Hu, J., Chen, W., Chen, J., Qiu, Z., Jing, Z.: Computational method for in-situ finite element modeling of inflatable membrane structures based on geometrical shape measurement using photogrammetry. Comput. Struct. 224, 106105 (2019)

    Article  Google Scholar 

  153. Ye, H., Li, B., Shi, X., Zhang, Y.: Quasi-static folding mechanical behavior analysis and optimization design for composite tube hinge. J. Mech. Eng. 56, 172–180 (2020)

    Google Scholar 

  154. Cai, J., Ma, R., Deng, X., Feng, J.: Static behavior of deployable cable-strut structures. J. Constr. Steel Res. 119, 63–75 (2016)

    Article  Google Scholar 

  155. Teixeira, A.M.A.J., Pfeil, M.S., Battista, R.C.: Structural evaluation of a GFRP truss girder for a deployable bridge. Compos. Struct. 110, 29–38 (2014)

    Article  Google Scholar 

  156. Zhang, D., Yuan, J., Li, F., Lv, Y., Zhao, Q., Gao, Y., Mo, C., Yang, J.: Experimental characterization of static behavior of a new GFRP-metal space truss deployable bridge: comparative case study. J. Bridge Eng. 26, 05020011 (2021)

    Article  Google Scholar 

  157. Mao, H., Zhang, D., Chen, L., Zhao, Q., Su, X., Yuan, J.: Flexural behaviour of a new lightweight glass fibre-reinforced polymer-metal string bridge with a box-truss composite girder. Adv. Struct. Eng. 23, 104–117 (2020)

    Article  Google Scholar 

  158. Shi, C., Guo, H., Liu, R., Deng, Z.: Configuration optimization and structure design of the double-layer hoop deployable antenna mechanism. J. Astronaut. 37, 869–878 (2016)

    Google Scholar 

  159. Martínez-Martín, F.J., Thrall, A.P.: Honeycomb core sandwich panels for origami-inspired deployable shelters: multi-objective optimization for minimum weight and maximum energy efficiency. Eng. Struct. 69, 158–167 (2014)

    Article  Google Scholar 

  160. Kaveh, A., Talatahari, S.: A particle swarm ant colony optimization for truss structures with discrete variables. J. Constr. Steel Res. 65, 1558–1568 (2009)

    Article  Google Scholar 

  161. Thrall, A.P., Adriaenssens, S., Paya-Zaforteza, I., Zoli, T.P.: Linkage-based movable bridges: design methodology and three novel forms. Eng. Struct. 37, 214–223 (2012)

    Article  Google Scholar 

  162. Arnouts, L.I.W., Massart, T.J., De Temmerman, N., Berke, P.Z.: Multi-objective optimisation of deployable bistable scissor structures. Autom. Constr. 114, 103154 (2020)

    Article  Google Scholar 

  163. Thrall, A.P., Zhu, M., Guest, J.K., Paya-Zaforteza, I., Adriaenssens, S.: Structural optimization of deploying structures composed of linkages. J. Comput. Civ. Eng. 28, 04014010 (2014)

    Article  Google Scholar 

  164. Kaveh, A., Shojaee, S.: Optimal design of scissor-link foldable structures using ant colony optimization algorithm. Comput.-Aided Civ. Infrastruct. Eng. 22, 56–64 (2007)

    Article  Google Scholar 

  165. You, Z.: Sensitivity analysis based on the force method for deployable cable-stiffened structures. Eng. Optim. 29, 429–441 (1997)

    Article  Google Scholar 

  166. Ye, H., Zhang, Y., Yang, Q., Xiao, Y., Grandhi, R.V., Fischer, C.C.: Optimal design of a three tape-spring hinge deployable space structure using an experimentally validated physics-based model. Struct. Multidiscip. Optim. 56, 973–989 (2017)

    Article  Google Scholar 

  167. Song, Z., Chen, C., Jiang, S., Chen, J., Liu, T., Deng, W., Lin, F.: Optimization analysis of microgravity experimental facility for the deployable structures based on force balance method. Microgravity Sci. Technol. 32, 773–785 (2020)

    Article  ADS  Google Scholar 

  168. Koumar, A., Tysmans, T., Coelho, R.F., De Temmerman, N.: An automated structural optimisation methodology for scissor structures using a genetic algorithm. Appl. Comput. Intell. Soft Comput. 2017, 6843574 (2017)

    Google Scholar 

  169. Haftka, R.T., Adelman, H.M.: Selection of actuator locations for static shape control of large space structures by heuristic integer programing. Comput. Struct. 20, 575–582 (1985)

    Article  Google Scholar 

  170. Mitsugi, J., Yasaka, T., Miura, K.: Shape control of the tension truss antenna. AIAA J. 28, 316–322 (1990)

    Article  ADS  Google Scholar 

  171. Tanaka, H., Natori, M.C.: Shape control of space antennas consisting of cable networks. Acta Astronaut. 55, 519–527 (2004)

    Article  ADS  Google Scholar 

  172. Zong, Y., Hu, N., Duan, B., Yang, G., Cao, H., Xu, W.: Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures. Acta Astronaut. 120, 182–191 (2016)

    Article  ADS  Google Scholar 

  173. Maji, A.K., Starnes, M.A.: Shape measurement and control of deployable membrane structures. Exp. Mech. 40, 154–159 (2000)

    Article  Google Scholar 

  174. Ukita, N., Saito, M., Ezawa, H., Ikenoue, B., Ishizaki, H., Iwashita, H., Yamaguchi, N., Hayakawa, T.: Design and performance of the ALMA-J prototype antenna. In: Ground-Based Telescopes, pp. 1085–1093. SPIE, Glasgow (2004)

    Chapter  Google Scholar 

  175. Wiktowy, M., O’Grady, M., Atkins, G., Singhal, R.: Photogrammetric distortion measurements of antennas in a thermal-vacuum environment. Can. Aeronaut. Space J. 49, 65–71 (2003)

    Article  ADS  Google Scholar 

  176. Yang, G., Duan, B., Du, J., Zhang, Y.: Shape pre-adjustment of deployable mesh antennas considering space thermal loads. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 232, 143–155 (2018)

    Article  Google Scholar 

  177. Nie, R., He, B., Yan, S., Ma, X.: Design optimization of mesh antennas for on-orbit thermal effects. Int. J. Mech. Sci. 175, 105547 (2020)

    Article  Google Scholar 

  178. John, M.: Hedgepeth: accuracy potentials for large space antenna reflectors with passive structure. J. Spacecr. Rockets 19, 211 (1982)

    Article  Google Scholar 

  179. Meguro, A., Harada, S., Watanabe, M.: Key technologies for high-accuracy large mesh antenna reflectors. Acta Astronaut. 53, 899–908 (2003)

    Article  ADS  Google Scholar 

  180. Mobrem, M.: Methods of analyzing surface accuracy of large antenna structures due to manufacturing tolerances. In: The 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1453. AIAA, Norfolk (2013)

    Google Scholar 

  181. Tibert, G.: Deployable tensegrity structures for space applications. Royal Institute of Technology (2002)

  182. Hedgepeth, J.M.: Influence of fabrication tolerances on the surface accuracy of large antenna structures. AIAA J. 20, 680–686 (1982)

    Article  ADS  Google Scholar 

  183. Li, X., Ding, X., Chirikjian, G.S.: Analysis of angular-error uncertainty in planar multiple-loop structures with joint clearances. Mech. Mach. Theory 91, 69–85 (2015)

    Article  Google Scholar 

  184. Nie, R., He, B., Hodges, D.H., Ma, X.: Integrated form finding method for mesh reflector antennas considering the flexible truss and hinges. Aerosp. Sci. Technol. 84, 926–937 (2019)

    Article  Google Scholar 

  185. Ponomarev, V.S., Gerasimov, A.V., Ponomarev, S.V.: Thermomechanical analysis of large deployable space reflector antenna. In: Conference on Heat and Mass Transfer in the Thermal Control System of Technical and Technological Energy Equipment, p. 01059. MATEC Web of Conferences, Tomsk (2015)

    Google Scholar 

  186. Fang, H., Sunada, E., Chaubell, J., Estebanfernandez, D., Thomson, M., Nicaise, F.: Thermal deformation and RF performance analyses for the SWOT large deployable Ka-band reflectarray. In: The 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 2502. AIAA, Orlando (2010)

    Google Scholar 

  187. Lu, G., Zhou, J., Cai, G., Fang, G., Lv, L., Peng, F.: Studies of thermal deformation and shape control of a space planar phased array antenna. Aerosp. Sci. Technol. 93, 105311 (2019)

    Article  Google Scholar 

  188. Wu, M., Zhang, Z., Guan, F.: Analysis and measurement of flatness of a single-layer deployable truss structure driven by elastic components. Manned Spacefl. 23, 529–535 (2017)

    Google Scholar 

  189. Zhao, Q., Guo, J., Yu, D., Hong, J., Chen, F.: An enhanced method of resizing support links for a planar closed-loop overconstrained deployable structure considering kinematic reliability and surface accuracy. Aerosp. Sci. Technol. 104, 105988 (2020)

    Article  Google Scholar 

  190. Yang, Y., Luo, J., Zhang, W., Xie, S., Sun, Y., Li, H.: Accuracy analysis of a multi-closed-loop deployable mechanism. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 230, 611–621 (2016)

    Article  Google Scholar 

  191. Veenendaal, D., Block, P.: An overview and comparison of structural form finding methods for general networks. Int. J. Solids Struct. 49, 3741–3753 (2012)

    Article  Google Scholar 

  192. Tibert, A.G., Pellegrino, S.: Review of form-finding methods for tensegrity structures. Int. J. Space Struct. 18, 209–223 (2003)

    Article  Google Scholar 

  193. Siev, A., Eidelman, J.: Stress analysis of prestressed suspended roofs. J. Struct. Div. 90, 103–121 (1964)

    Article  Google Scholar 

  194. Argyris, J.H., Angelopoulos, T., Bichat, B.: A general method for the shape finding of lightweight tension structures. Comput. Methods Appl. Mech. Eng. 3, 135–149 (1974)

    Article  ADS  Google Scholar 

  195. Linkwitz, K., Schek, H.J.: Einige bemerkungen zur berechnung von vorgespannten seilnetzkonstruktionen. Ing.-Arch. 40, 145–158 (1971)

    Article  Google Scholar 

  196. Harber, R.B.: Initial equilibrium solution methods for cable reinforced membranes part I-formulations. Comput. Methods Appl. Mech. Eng. 30, 263–284 (1982)

    Article  ADS  Google Scholar 

  197. Bletzinger, K.U., Ramm, E.: A general finite element approach to the form finding of tensile structures by the updated reference strategy. Int. J. Space Struct. 14, 131–145 (1999)

    Article  Google Scholar 

  198. Sanchez, J., Serna, M.A., Morer, P.: A multi-step force-density method and surface-fitting approach for the preliminary shape design of tensile structures. Eng. Struct. 29, 1966–1976 (2007)

    Article  Google Scholar 

  199. Pauletti, R.M.O., Pimenta, P.M.: The natural force density method for the shape finding of taut structures. Comput. Methods Appl. Mech. Eng. 197, 4419–4428 (2008)

    Article  ADS  MATH  Google Scholar 

  200. Barnes, M.R.: Form Finding and Analysis of Tension Space Structures by Dynamic Relaxation. City University London, London (1977)

    Google Scholar 

  201. Kilian, A., Ochsendorf, J.: Particle-spring systems for structural form finding. J. Int. Assoc. Shell Spat. Struct. 46, 77–84 (2005)

    Google Scholar 

  202. Inoyama, D., Sanders, B.P., Joo, J.J.: Topology synthesis of distributed actuation systems for morphing wing structures. J. Aircr. 44, 1205–1213 (2007)

    Article  Google Scholar 

  203. Inoyama, D., Sanders, B.P., Joo, J.J.: Topology optimization approach for the determination of the multiple-configuration morphing wing structure. J. Aircr. 45, 1853–1862 (2008)

    Article  Google Scholar 

  204. Wu, J., Li, J., Yan, S.: Design of deployable bistable structures for morphing skin and its structural optimization. Eng. Optim. 46, 745–762 (2014)

    Article  Google Scholar 

  205. Bletzinger, K.U., Wuchner, R., Daoud, F., Camprubi, N.: Computational methods for form finding and optimization of shells and membranes. Comput. Methods Appl. Mech. Eng. 194, 3438–3452 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  206. Lewis, W.J.: Tension Structures: Form and Behavior. Thomas Telford, London (2006)

    Google Scholar 

  207. Tibert, G.: Optimal design of tension truss antennas. In: The 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1629. AIAA, Norfolk (2003)

    Google Scholar 

  208. Yang, D., Liu, J., Zhang, Y., Zhang, S.: Optimal surface profile design of deployable mesh reflectors via a force density strategy. Acta Astronaut. 130, 137–146 (2017)

    Article  ADS  Google Scholar 

  209. Liu, R., Guo, H., Liu, R., Wang, H., Tang, D., Song, X.: Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables. Acta Astronaut. 140, 66–77 (2017)

    Article  ADS  Google Scholar 

  210. Ma, X., Song, Y., Li, Z., Li, T., Wang, Z., Deng, H.: Mesh reflector antennas: form finding analysis review. In: The 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, p. 1576. AIAA, Boston (2013)

    Google Scholar 

  211. Li, T., Jiang, J., Deng, H., Lin, Z., Wang, Z.: Form-finding methods for deployable mesh reflector antennas. Chin. J. Aeronaut. 26, 1276–1282 (2013)

    Article  Google Scholar 

  212. Liu, W., Li, D.X., Yu, X.Z., Jiang, J.P.: Exact mesh shape design of large cable-network antenna reflectors with flexible ring truss supports. Acta Mech. Sin. 30, 198–205 (2014)

    Article  ADS  MATH  Google Scholar 

  213. Lu, C., Zhu, H., Li, S.: Initial form-finding design of deployable tensegrity structures with dynamic relaxation method. J. Intell. Fuzzy Syst. 33, 2861–2868 (2017)

    Article  Google Scholar 

  214. Nie, R., He, B., Hodges, D.H., Ma, X.: Form finding and design optimization of cable network structures with flexible frames. Comput. Struct. 220, 81–91 (2019)

    Article  Google Scholar 

  215. Li, T., Deng, H., Tang, Y., Jiang, J., Ma, X.: Accuracy analysis and form-finding design of uncertain mesh reflectors based on interval force density method. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 231, 2163–2173 (2017)

    Article  Google Scholar 

  216. Nie, R., He, B., Yan, S., Ma, X.: Optimization design method for the cable network of mesh reflector antennas considering space thermal effects. Aerosp. Sci. Technol. 94, 105380 (2019)

    Article  Google Scholar 

  217. Nie, R., He, B., Yan, S., Ma, X.: Optimization design method for mesh reflector antennas considering the truss deformation and thermal effects. Eng. Struct. 208, 110253 (2020)

    Article  Google Scholar 

  218. Du, J., Gu, Y., Bao, H., Wang, C., Chen, X.: Shape adjustment optimization and experiment of cable-membrane reflectors. Acta Astronaut. 146, 192–201 (2018)

    Article  ADS  Google Scholar 

  219. Du, J., Zong, Y., Bao, H.: Shape adjustment of cable mesh antennas using sequential quadratic programming. Aerosp. Sci. Technol. 30, 26–32 (2013)

    Article  Google Scholar 

  220. Yoon, H.S., Washington, G.: An optimal method of shape control for deformable structures with an application to a mechanically reconfigurable reflector antenna. Smart Mater. Struct. 19, 105004 (2010)

    Article  ADS  Google Scholar 

  221. Zhang, S., Du, J., Yang, D., Zhang, Y., Li, S.: A combined shape control procedure of cable mesh reflector antennas with optimality criterion and integrated structural electromagnetic concept. Struct. Multidiscip. Optim. 55, 289–295 (2017)

    Article  MathSciNet  Google Scholar 

  222. Tabata, M., Natori, M.C.: Active shape control of a deployable space antenna reflector. J. Intell. Mater. Syst. Struct. 7, 235–240 (1996)

    Article  Google Scholar 

  223. Tanaka, H.: Surface error estimation and correction of a space antenna based on antenna gain analyses. Acta Astronaut. 68, 1062–1069 (2011)

    Article  ADS  Google Scholar 

  224. Wang, Z., Li, T., Deng, H.: Form-finding analysis and active shape adjustment of cable net reflectors with PZT actuators. J. Aerosp. Eng. 27, 575–586 (2014)

    Article  Google Scholar 

  225. Wang, Z., Li, T., Cao, Y.: Active shape adjustment of cable net structures with PZT actuators. Aerosp. Sci. Technol. 26, 160–168 (2013)

    Article  Google Scholar 

  226. Xun, G., Peng, H., Wu, S., Wu, Z.: Active shape adjustment of large cable-mesh reflectors using novel fast model predictive control. J. Aerosp. Eng. 31, 04018038 (2018)

    Article  Google Scholar 

  227. Zuo, Y., Li, Z., Jin, G., Xie, P.: Spontaneously deployable structure for space diffractive telescope. Optoelectron. Lett. 13, 245–249 (2017)

    Article  ADS  Google Scholar 

  228. Zheng, T., Fei, Z., Rui, X., Yan, L.: A novel space large deployable paraboloid structure with power and communication integration. Int. J. Antennas Propag. 2019, 3980947 (2019)

    Article  Google Scholar 

  229. Zhang, H., Zhou, C., Xie, X., Li, T.: Analysis and simulation of a new type of radial deployable structures. Adv. Mater. Res. 753, 1128–1132 (2013)

    Google Scholar 

  230. Zareei, A., Deng, B., Bertoldi, K.: Harnessing transition waves to realize deployable structures. Proc. Natl. Acad. Sci. 117, 4015–4020 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  231. Choi, J., Lee, D., Hwang, K., Kim, B.: A mechanism for a deployable optical structure of a small satellite. Int. J. Precis. Eng. Manuf. 16, 2537–2543 (2015)

    Article  Google Scholar 

  232. Leng, J., Yu, K., Sun, J., Liu, Y.: Deployable morphing structure based on shape memory polymer. Aircr. Eng. Aerosp. Technol. 87, 218–223 (2015)

    Article  Google Scholar 

  233. Li, F., Liu, L., Lan, X., Zhou, X., Bian, W., Liu, Y., Leng, J.: Preliminary design and analysis of a cubic deployable support structure based on shape memory polymer composite. Int. J. Smart Nano Mater. 7, 106–118 (2016)

    Article  ADS  Google Scholar 

  234. Minori, A.F., He, Q., Glick, P.E., Adibnazari, I., Stopol, A., Cai, S., Tolley, M.T.: Reversible actuation for self-folding modular machines using liquid crystal elastomer. Smart Mater. Struct. 29, 105003 (2020)

    Article  ADS  Google Scholar 

  235. Santo, L., Bellisario, D., Iorio, L., Quadrini, F.: Shape memory composite structures for self-deployable solar sails. Astrodynamics 3, 247–255 (2019)

    Article  Google Scholar 

  236. Wang, W., Li, C., Rodrigue, H., Yuan, F., Han, M.W., Cho, M., Ahn, S.H.: Kirigami/origami-based soft deployable reflector for optical beam steering. Adv. Funct. Mater. 27, 1604214 (2017)

    Article  Google Scholar 

  237. Sun, Y., Wang, S., Mills, J.K., Zhi, C.: Kinematics and dynamics of deployable structures with scissor-like-elements based on screw theory. Chin. J. Mech. Eng. 27, 655–662 (2014)

    Article  Google Scholar 

  238. Wang, D., Liu, R., Wang, Y., Guo, H., Cong, Q., Zhang, C.: Deployment analysis of a planar deployable support truss structure. In: 2013 IEEE International Conference on Mechatronics and Automation, pp. 1287–1292. IEEE, Takamatsu (2013)

    Chapter  Google Scholar 

  239. Suh, J., Jeong, S., Han, J.: Conceptual design and dynamic analysis of bistable deployable structure. In: Active and Passive Smart Structures and Integrated Systems XII, p. 105950J. SPIE, Denver (2018)

    Google Scholar 

  240. Peng, Y., Zhao, Z., Zhou, M., He, J., Yang, J., Xiao, Y.: Flexible multibody model and the dynamics of the deployment of mesh antennas. J. Guid. Control Dyn. 40, 1499–1506 (2017)

    Article  ADS  Google Scholar 

  241. Wang, Y., Guo, H., Yang, H., Liu, R., Deng, Z.: Deployment analysis and optimization of a flexible deployable structure for large synthetic aperture radar antennas. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 230, 615–627 (2016)

    Article  Google Scholar 

  242. Zhang, Y., Li, N., Yang, G., Ru, W.: Dynamic analysis of the deployment for mesh reflector deployable antennas with the cable-net structure. Acta Astronaut. 131, 182–189 (2017)

    Article  ADS  Google Scholar 

  243. Peng, Q., Wang, S., Zhi, C., Li, B.: A new flexible multibody dynamics analysis methodology of deployable structures with scissor-like elements. Chin. J. Mech. Eng. 32, 1–10 (2019)

    Article  Google Scholar 

  244. Hachkowski, M.R., Peterson, L.D., Lake, M.S.: Friction model of a revolute joint for a precision deployable spacecraft structure. J. Spacecr. Rockets 36, 591–598 (1999)

    Article  ADS  Google Scholar 

  245. Dewalque, F., Rochus, P., Bruls, O.: Importance of structural damping in the dynamic analysis of compliant deployable structures. Acta Astronaut. 111, 323–333 (2015)

    Article  ADS  Google Scholar 

  246. Li, B., Wang, S., Yuan, R., Xue, X., Zhi, C.: Dynamic characteristics of planar linear array deployable structure based on scissor-like element with joint clearance using a new mixed contact force model. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 230, 3161–3174 (2016)

    Article  Google Scholar 

  247. Li, B., Wang, S., Makis, V., Xue, X.: Dynamic characteristics of planar linear array deployable structure based on scissor-like element with differently located revolute clearance joints. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 232, 1759–1777 (2018)

    Article  Google Scholar 

  248. Ma, X., Li, T.: Wave analysis of planar deployable structures with revolute clearance joints based on spectral element method. Int. J. Appl. Mech. 10, 1850090 (2018)

    Article  Google Scholar 

  249. Dewalque, F., Schwartz, C., Denoel, V., Croisier, J.L., Forthomme, B., Bruls, O.: Experimental and numerical investigation of the nonlinear dynamics of compliant mechanisms for deployable structures. Mech. Syst. Signal Process. 101, 1–25 (2018)

    Article  ADS  Google Scholar 

  250. Salama, M., Kuo, C.P., Lou, M.: Simulation of deployment dynamics of inflatable structures. AIAA J. 38, 2277–2283 (2000)

    Article  ADS  Google Scholar 

  251. Haug, E., Protard, J.B., Milcent, G., Herren, A., Brunner, O.: The numerical simulation of the inflation process of space rigidized antenna structures. ESA SP 2, 861–869 (1991)

    ADS  Google Scholar 

  252. Lian, W., Bhalsod, D., Olovsson, L.: Benchmark study on the airbag particle method for out-of-position applications. In: 10th International LS-DYNA Users Conference, pp. 11–21. LSTC, Dearborn (2008)

    Google Scholar 

  253. Hirth, A., Haufe, A., Olovsson, L.: Airbag simulation with LS-DYNA: past-present-future. In: The 6th European LS-DYNA Conference, pp. 23–45. LSTC, Gothenburg (2007)

    Google Scholar 

  254. Marklund, P.O., Nilsson, L.: Simulation of airbag inflation processes using a coupled fluid structure approach. Comput. Mech. 29, 289–297 (2002)

    Article  MATH  Google Scholar 

  255. Glaser, R., Caccese, V., Shahinpoor, M.: Comparative finite element and experimental analysis of a quasi-static inflation of a thin deployable membrane space structure. Finite Elem. Anal. Des. 138, 48–65 (2018)

    Article  Google Scholar 

  256. Mitsugi, J., Ando, K., Senbokuya, Y., Meguro, A.: Deployment analysis of large space antenna using flexible multibody dynamics simulation. Acta Astronaut. 47, 19–26 (2000)

    Article  ADS  Google Scholar 

  257. Zhang, Y., Ru, W., Yang, G., Li, N.: Deployment analysis considering the cable-net tension effect for deployable antennas. Aerosp. Sci. Technol. 48, 193–202 (2016)

    Article  Google Scholar 

  258. Nie, R., He, B., Zhang, L., Fang, Y.: Deployment analysis for space cable net structures with varying topologies and parameters. Aerosp. Sci. Technol. 68, 1–10 (2017)

    Article  Google Scholar 

  259. Peng, Q.a., Wang, S., Zhi, C.: The design and simulation of a new time-controlled spring driven hinge for deployable structures. Mech. Mach. Sci. 408, 761–772 (2017)

    Google Scholar 

  260. Chu, Z., Deng, Z., Qi, X., Li, B.: Modeling and analysis of a large deployable antenna structure. Acta Astronaut. 95, 51–60 (2014)

    Article  ADS  Google Scholar 

  261. Peng, H., Fei, L., Kan, Z., Liu, P.: Symplectic instantaneous optimal control of deployable structures driven by sliding cable actuators. J. Guid. Control Dyn. 43, 1114–1128 (2020)

    Article  ADS  Google Scholar 

  262. Noor, A.K.: Continuum modeling for repetitive lattice structures. Appl. Mech. Rev. 41, 285–296 (1988)

    Article  ADS  Google Scholar 

  263. Salehian, A., Inman, D.J.: Dynamic analysis of a lattice structure by homogenization: experimental validation. J. Sound Vib. 316, 180–197 (2008)

    Article  ADS  Google Scholar 

  264. Guo, H., Liu, R., Deng, Z.: Dynamic analysis and nonlinear identification of space deployable structure. J. Cent. South Univ. 20, 1204–1213 (2013)

    Article  Google Scholar 

  265. Glassman, T., Warwick, S., Lo, A., Casement, S.: Starshade starlight-suppression performance with a deployable structure. In: Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, p. 990425. SPIE, Edinburgh (2016)

    Google Scholar 

  266. Li, F., Liu, L., Lan, X., Wang, T., Li, X., Chen, F., Bian, W., Liu, Y., Leng, J.: Modal analyses of deployable truss structures based on shape memory polymer composites. Int. J. Appl. Mech. 8, 1640009 (2016)

    Article  Google Scholar 

  267. Zhao, C., Li, C., Zhou, N., Liao, H.: Self-deployable structure designed for space telescope for microsatellite application. In: 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-Optical Devices and Systems; and Smart Structures and Materials, p. 96850B. SPIE, Suzhou(2016)

    Google Scholar 

  268. Guo, H., Zhang, J., Liu, R., Deng, Z.: Effects of joint on dynamics of space deployable structure. Chin. J. Mech. Eng. 26, 861–872 (2013)

    Article  Google Scholar 

  269. Song, Z., Yang, X., Huang, H., Li, B.: Dynamic analysis of planar mechanisms with revolute clearance joints based on two evaluation indices. Mech. Based Des. Struct. Mach. 44, 231–249 (2016)

    Article  Google Scholar 

  270. Shen, Z., Li, H., Liu, X., Hu, G.: Thermal shock induced dynamics of a spacecraft with a flexible deploying boom. Acta Astronaut. 141, 123–131 (2017)

    Article  ADS  Google Scholar 

  271. Shen, Z., Hu, G.: Thermally induced dynamics of a spinning spacecraft with an axial flexible boom. J. Spacecr. Rockets 52, 1503–1507 (2015)

    Article  ADS  Google Scholar 

  272. Boley, B.A.: Thermally induced vibrations of beams. J. Aeronaut. Sci. 23, 179–181 (1956)

    MATH  Google Scholar 

  273. Thornton, E.A., Kim, Y.A.: Thermally induced bending vibrations of a flexible rolled-up solar array. J. Spacecr. Rockets 30, 438–448 (1993)

    Article  ADS  Google Scholar 

  274. Liu, R., Guo, H., Liu, R., Wang, H., Tang, D., Deng, Z.: Structural design and optimization of large cable-rib tension deployable antenna structure with dynamic constraint. Acta Astronaut. 151, 160–172 (2018)

    Article  ADS  Google Scholar 

  275. Mroz, A., Holnicki-Szulc, J., Biczyk, J.: Prestress accumulation-release technique for damping of impact-born vibrations: application to self-deployable structures. Math. Probl. Eng. 2015, 720236 (2015)

    Article  Google Scholar 

  276. Bullock, S.J., Peterson, L.D.: Nanometer regularity in the mechanics of a precision deployable spacecraft structure joint. J. Spacecr. Rockets 36, 758–764 (1999)

    Article  ADS  Google Scholar 

  277. Moon, F.C., Li, G.X.: Experimental study of chaotic vibrations in a pin-jointed space truss structure. AIAA J. 28, 915–921 (2012)

    Article  ADS  Google Scholar 

  278. Siriguleng, B., Zhang, W., Liu, T., Liu, Y.Z.: Vibration modal experiments and modal interactions of a large space deployable antenna with carbon fiber material and ring-truss structure. Eng. Struct. 207, 109932 (2020)

    Article  Google Scholar 

  279. Wei, J., Ma, R., Liu, Y., Yu, J., Eriksson, A., Tan, H.: Modal analysis and identification of deployable membrane structures. Acta Astronaut. 152, 811–822 (2018)

    Article  ADS  Google Scholar 

  280. Warren, P.A., Peterson, L.D., Hinkle, J.D.: Submicron mechanical stability of a prototype deployable space telescope support structure. J. Spacecr. Rockets 36, 765–771 (1999)

    Article  ADS  Google Scholar 

  281. Moser, R.L., Erwin, R.S., Schrader, K.N., Bell, K.D., Griffin, S.F., Powers, M.K.: Experimental control of microdynamic events observed during the testing of a large deployable optical structure. In: UV, Optical, and IR Space Telescopes and Instruments, pp. 715–726. SPIE, Munich (2000)

    Chapter  Google Scholar 

  282. Ingham, M.D., Crawley, E.F.: Microdynamic characterization of modal parameters for a deployable space structure. AIAA J. 39, 331–338 (2001)

    Article  ADS  Google Scholar 

  283. Xun, J., Yan, S.: A revised Hilbert-Huang transformation based on the neural networks and its application in vibration signal analysis of a deployable structure. Mech. Syst. Signal Process. 22, 1705–1723 (2008)

    Article  ADS  Google Scholar 

  284. Liu, T., Yan, S., Zhang, W.: Time-frequency analysis of nonstationary vibration signals for deployable structures by using the constant-Q nonstationary gabor transform. Mech. Syst. Signal Process. 75, 228–244 (2016)

    Article  ADS  Google Scholar 

  285. Liu, T., Huang, J., Yan, S., Guo, F.: Extraction and analysis of transient signals of a deployable structure vibration based on the sparse decomposition with mixed norms. Aerosp. Sci. Technol. 105, 106064 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China (Projects 51825503, 51721003, 52035008, 52105032, 52175027, 52175242).

Author information

Authors and Affiliations

Authors

Contributions

Xiao Zhang and Rui Nie contributed equally to this work.

Corresponding author

Correspondence to Yan Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Nie, R., Chen, Y. et al. Deployable Structures: Structural Design and Static/Dynamic Analysis. J Elast 146, 199–235 (2021). https://doi.org/10.1007/s10659-021-09860-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-021-09860-6

Keywords

Mathematics Subject Classification

Navigation